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Abstract
The system of N particles that are non-fermions interacting with non-positive
pair potentials is considered. Each system is represented by a graph with points
for particles and links for existence of bound states in the corresponding particle
pair. A general sufficient condition for stability (the stability is defined as the
existence of a bound state with the energy below all dissociation thresholds) is
formulated as a theorem: any connected graph represents a stable system. The
theorem also shows that the system may dissociate only into those clusters that
contain full connected components of the graph. The applications to stability
of nuclei are discussed.

PACS numbers: 03.65.Ge, 21.45.+v

1. Introduction

In quantum mechanics it is very important to understand whether the system stays as a whole
or dissociates into a number of subsystems. This question of stability is crucial for various
issues in nuclear, atomic and molecular physics. The spectrum of a physical system always
has a zero energy threshold corresponding to independent scattering of all particles. Other
continuum (dissociation) thresholds correspond to all possible ways to decompose all particles
into clusters, which are either bound subsystems or single particles. For a given decomposition
the sum of a cluster’s ground-state energies (zero if a cluster consists of one particle) is the
energy of the continuum threshold. Below all continuum thresholds in the spectrum there lie
only isolated eigenvalues corresponding to the bound states of the whole system [1].

From the spectral point of view, and this is how we shall understand this, stability is the
presence of a bound state below any continuum in the spectrum. For the system this would
mean that dissociation is unfavourable for gaining the lowest energy. In contrast, the system
of N particles is unstable if the lowest energy E1 + E2 + · · · + En is attained as a sum of
ground-state energies of n bound clusters (the energy Ei is zero if the cluster i consists of one
particle).
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Figure 1. All different types of graphs for three-body systems, links between particles symbolize
the existence of a bound state in a pair.

The factors that affect stability of quantum systems may be classified by three causes of
instability [3]: (i) kinetic motion; (ii) the Pauli principle; (iii) repulsive forces. The absence
of parallels with classical mechanics makes the first two reasons the most intriguing. In actual
atomic and molecular systems these factors appear mixed and sometimes it is practical to
distil the prevailing factor. For general understanding, as well, it is useful to consider systems
where only one of the reasons predicates the instability. Here we shall deal with kinetic
instability.

The question of stability for particles with attractive pair-interactions, i.e. Vik � 0, is non-
trivial. It is well known that the attractive potential in three dimensions must have a minimal
strength to bind a particle. As a consequence, the Hamiltonian with weak, yet attractive,
pair interactions may have only positive energy, which means total instability for the system
[1, 3]. For physical reasons weak pair interactions are unable to confine kinetic motion and
the system falls apart becoming kinetically unstable.

Interesting natural phenomena, where kinetic instability plays a decisive role are
associated with exotic nuclei on the edge of stable nuclear chart, especially Borromean
nuclei [5]. These are loosely bound systems such as nuclei 6He and 11Li, which have a
pronounced three-body structure with no subsystems bound. In particular, the nucleus 6He
comprises an α-particle and two neutrons, which together are bound in spite of no bound
states in pairs such as α-particle and neutron or two neutrons. Italian heraldry prompted
the term Borromean implying three interlaced rings on the Borromean coat of arms, where
removing one ring dismantles all three. In some models the pair interactions in the three-
body system 6He are attractive which raises the question of what is the sufficient strength of
attractive pair interactions that makes 6He system stable. In [2, 3] one can find necessary
conditions for stability of such systems. Here we shall derive a simple sufficient condition for
stability.

2. Graph representation

Throughout the paper we shall deal with particles that are non-fermions, thus switching off the
Pauli principle. In a system of N particles the situation can be depicted with a graph. Scatter N
particles as points on a plane and connect two points (i) and (k) with a link if the pair (ik) has
a bound state. Figure 1 shows all possibilities for three particles. In [3, 4] simple necessary
conditions for binding are expressed through fractions of binding and mass ratios. From
these conditions it follows that the system in figure 1(a) is definitely unbound if fractions of
binding are very small, but can be bound otherwise. The stable system with a graph in
figure 1(a) is called Borromean, as we call all systems with no bound subsystems. If
interactions in figure 1(b) are loose, particle 3 will never couple to the bound pair (12).
Systems in figures 1(c), (d ) have a good chance of being stable. In fact, the links in these
graphs play the role of ‘threads’ between the particles, and if no particle or group of particles
can be taken out without cutting a ‘thread’ the system is stable. The following theorem holds.
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Figure 2. Choice of coordinates for two clusters. Circles marked with a cross refer to the centres
of gravity for each cluster.

Theorem 1. For a system of particles that are non-fermions and interact through negative
pair potentials any connected graph represents a stable system.

Proof. There could be a number of bosons in the system. However, the ground-state
wavefunction for the bound state will not change if we treat bosons as distinguishable
particles because this function is non-negative and non-degenerate [1] and thus all such
functions automatically possess required symmetry. Thus from now on we treat all particles
as distinguishable. We shall also assume that pair interactions conserve the parity. We have to
prove that the system as a whole has the energy less than any of its rearrangements into bound
clusters.

First, let us assume that there are two bound clusters with particle (a) in the first cluster,
and particle (b) in the second cluster, so that the pair (ab) has a bound state with some energy
eab. We shall call such clusters connected. Let particles (a) and (b) label the corresponding
clusters. We shall show that if both clusters have bound states with energies Ea and Eb, the
energy of two connected clusters united in one system is less than Ea + Eb. The particles in
the first cluster are (a, 1, 2, . . . , k), while the second cluster consists of (b, k + 1, . . . , l). Let
(ra, rb, ri) (i = 1, . . . , l) denote the vector positions of particles, then relative coordinates are
chosen as xi = ri − ra (i = 1, . . . , k) for the first cluster and xi = ri − rb (i = k + 1, . . . , l)

for the second cluster. Figure 2 illustrates the choice of relative coordinates in clusters. R
denotes the relative coordinate between centres of mass in both clusters (see figure 2), and
Ma = ma + m1 + · · · + mk and Mb = mb + mk+1 + · · · + ml denote total masses of the first and
the second cluster. With the help of the variational principle we shall seek the lower bound
for the total energy. Because all interactions between clusters are non-positive we can put
them to zero, all except Vab, and this would only increase the energy of the whole system.
Then the Hamiltonian of the relative motion in two clusters together with the centre of mass
motion separated takes the form

H = Ha(x) + Hb(x) − Ma + Mb

2MaMb

�R + Vab. (1)

Here Ha(x) and Hb(x) are the Hamiltonians of relative motion in each cluster (we use units
where h̄ = 1). In coordinates xi they have the form [6]

Ha(x) = −
k∑

i=1

1

2µai

�i − 1

ma

∑
1�i<j�k

∇i · ∇j + Ua(x) (2)

Hb(x) = −
l∑

i=k+1

1

2µbi

�i − 1

mb

∑
k+1�i<j�l

∇i · ∇j + Ub(x) (3)
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where µai = mami/(ma + mi), µbi = mbmi/(mb + mi) and Ua,Ub denote sums of pair
interactions in corresponding clusters. The label i below the differential operator means partial
differentiation with respect to coordinate xi . The last term in equation (1) is responsible for
the relative motion of clusters with respect to their centres of mass.

Now let us change the variables and instead of the set {x, R} use coordinates {x̃, rab},
where x̃i = xi and rab = rb − ra (see figure 2)

rab = R +
1

Ma

k∑
i=1

mixi − 1

Mb

l∑
i=k+1

mixi . (4)

Using equation (4) we find that the differential operators transform as follows:

∇i = ∇̃i +
mi

Ma

∇ab (1 � i � k) (5)

∇i = ∇̃i − mi

Mb

∇ab (k + 1 � i � l) (6)

∇R = ∇ab. (7)

Here ∇̃i and ∇ab mean differentiation with respect to x̃i and rab. We have to rewrite in new
coordinates (1). When we substitute expressions (5)–(7) into equation (1) we shall get the
same equation in new variables x̃i plus mixed terms such as ∇̃i · ∇ab and the term with �ab.
Let us find the expression for the coefficient in front of �ab. Collecting all terms in front of it
gives

k∑
i=1

(
1

2ma

− 1

2µai

)
m2

i

M2
a

+
l∑

i=k+1

(
1

2mb

− 1

2µbi

)
m2

i

M2
b

− 1

2ma

(Ma − ma)
2

M2
a

− 1

2mb

(Mb − mb)
2

M2
b

− Ma + Mb

2MaMb

= − 1

2µab

(8)

where µab = mamb/(ma + mb). Thus we rewrite the Hamiltonian in new coordinates

H = Ha(x̃) + Hb(x̃) +

(
− 1

2µab

�ab + Vab

)
+

l∑
i=1

Ci∇̃i · ∇ab (9)

where Ci are some coefficients depending on masses.
Because the clusters are bound we have Ha�a(x̃) = Ea�a(x̃) and Hb�b(x̃) = Eb�b(x̃).

Taking the ground-state wavefunction φab(rab) of the bound pair (ab) construct the trial
function χ(x̃, rab) = �a�bφab, where each function in the product is normalized.

The wavefunction φab has determined parity φab(rab) = ±φab(−rab). Passing from rab to
−rab in the variables of integration we shall prove that 〈χ |∇̃i · ∇ab|χ〉 = 0. Thus substituting
the trial function into 〈χ |H |χ〉 will cancel the contribution from the last term in equation (9)
and yield the energy Ea + Eb + eab. By the variational principle the energy of H is less than
Ea + Eb at least by eab and this proves the preliminary statement. (Note that the variational
argument does not show that two clusters are bound when together, it only shows that Ea + Eb

is not the lowest possible energy.)
Assume by contradiction that the system of N particles with connected graph is unstable

and the lowest energy E1 + E2 + · · · + En is attained as a sum of ground-state energies of
n bound clusters. There should exist particle (a) in the first cluster, which forms a bound
state with particle (b) in some cluster (i), otherwise all particles in cluster (1) would be
disconnected from all other particles in contradiction with condition of the theorem. But in
this case E1 + · · · + En is not the lowest energy, because we proved that clusters (1) and (i)



Sufficient condition for stability of N-body system with attractive pair potentials 6729

taken together have the energy lower than E1 + Ei . The obtained contradiction proves the
theorem. �

As discussed previously the question of stability for a system with attractive pair potentials
is far from trivial. In arbitrary system with attractive pair potentials each subsystem has a
good chance of being bound and any study of stability would involve accurate measuring of
the energy for all subsystems. Only after that using the variational principle one might show
that the total energy is lower than any dissociation threshold. From simple combinatorics that
would require accurate few-body calculation of the energy for (2N −N −2) subsystems which
is hopeless (for example, for six particles this makes 56 subsystems). From this viewpoint the
proved theorem is a useful tool for testing stability, because it requires checking the existence
of bound states only in pairs of particles which is simpler than to determine exactly the energy
of the ground state. The following corollary immediately follows from the proof.

Corollary 1. A system of particles which are non-fermions with Vik � 0 in one and two
dimensions is always stable. For a system of bosons with Vik � 0 in three dimensions stability
follows from the existence of a bound state in a pair of bosons.

It is well known that in one and two dimensions a pair of particles with Vik � 0 has a
bound state, so the graph for the whole system becomes fully connected in all cases mentioned
in the corollary. The theorem does not work for fermions. To see this take for example a
three-body system with two particles of equal mass 1 and 2, which try to bind to the core
having the infinite mass 3, so that V12 = 0 and V13(r) = V23(r) = U(r). If potential U(r)
supports only one bound state then there would be only one bound state in the three-body
system, which is symmetric with respect to the interchange of particles 1 and 2. If particles
1 and 2 are fermions the whole system is unstable because there are no bound states with
required symmetry, nevertheless the graph for the system is obviously connected.

Each graph has a number of connected components (if there is only one component the
system is stable). The following useful corollary substantially reduces the possible ways of
dissociation of a system.

Corollary 2. If the system dissociates with the lowest possible energy, it may dissociate only
into clusters that contain fully connected components.

This immediately follows from the proof of the theorem. Let the lowest energy
E1 + E2 + · · · + En be attained as a sum of ground-state energies of n bound clusters. From the
proof it follows that each particle in cluster (1) is disconnected from particles in other clusters
and this means that it contains full connected components of the graph.

In the next theorem we prove the lower bound for the energy that is useful for further
restrictions of possible types of dissociation.

Theorem 2. Let n clusters consisting of particles that are non-fermions and interact through
negative pair potentials have the energies E1, . . . , En. Additionally assume that in each
cluster (i) there exists a particle ci (i = 1, . . . , n), so that n particles ci have a bound
state with the energy e(c1, . . . , cn). Then the total energy of n clusters together is less than
E1 + · · · + En + e(c1, . . . , cn).

Proof. The proof follows the same lines as that of theorem 1. The clusters from 1 to n
contain the particles {c1, 1, 2, . . . , k1}, {c2, k1 + 1, . . . , k2}, . . . , {cn, kn−1 + 1, . . . , kn}. Let
mi, ri (i = 1, . . . , kn) and mcj

, rcj
(j = 1, . . . , n) denote the vector positions and masses of

all particles. As before to separate the centre of mass motion from each cluster we choose
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Figure 3. Choice of coordinates for n clusters in the proof of theorem 2.

relative coordinates in each cluster xs = rs −rcj
, where kj−1 +1 � s � kj and j = 1, 2, . . . , n

(see figure 3). The relative motion of clusters is described by translation-invariant coordinates
of clusters’ centres of mass

Rj = 1

Mcj


mcj

rcj
+

kj∑
s=kj−1+1

msrs


 − 1

Mcn


mcn

rcn
+

kn∑
s=kn−1+1

msrs


 (10)

where j = 1, 2, . . . , n− 1 and Mcj
= mcj

+
∑kj

s=kj−1+1 ms is the mass of the cluster containing
the particle cj . The particles ci (i = 1, . . . , n) form a bound system. In this system we choose
relative coordinates as fj = rcj

− rcn
(j = 1, . . . , n − 1) (see figure 3). The Hamiltonian of

this system with separated centre of mass motion

h(f) = −
n−1∑
i=1

1

2µcicn

�fi
− 1

mcn

n−1∑
i<j=1

∇fi
· ∇fj

+ U(f) (11)

where µcicn
is the reduced mass for particles ci and cn and U(f) is the sum of interactions

between particles ci . By condition of the theorem there is a bound state wavefunction �(f)
depending on relative coordinates fi so that h(f)�(f) = e(c1, . . . , cn)�(f).

Because we seek an upper bound for the energy and all potentials are non-positive we can
put all pair interactions between clusters to zero except the term U(f). The Hamiltonian of
the whole system takes the form

H =
n∑

j=1

Hcj
(x) + TR + U(f). (12)

Here the Hamiltonian of relative motion in each cluster

Hcj
(x) = −

kj∑
s=kj−1+1

1

2µscj

�s − 1

mcj

kj∑
s<p=kj−1+1

∇s · ∇p + Ucj
(x) (13)
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where Ucj
(x) is the sum of pair interactions in the cluster with the particle cj . The second term

in equation (12) is the kinetic energy of clusters’ relative motion with respect to the clusters’
centres of mass

TR = −
n−1∑
j=1

Mcj
+ Mcn

2Mcj
Mcn

�Rj
− 1

Mcn

n−1∑
i<j=1

∇Ri
· ∇Rj

. (14)

Now let us pass from the set of variables {x, R} to the set {x̃, f}, where x̃i = xi . Just as in
equation (4) we get

fj = Rj +
1

Mcn

kn∑
i=kn−1+1

mixi − 1

Mcj

kj∑
i=kj−1+1

mixi . (15)

Using equation (15) we find that the differential operators transform as follows:

∇i = ∇̃i − mi

Mcj

∇fj
(kj−1 + 1 � i � kj ) (j � n − 1) (16)

∇i = ∇̃i +
mi

Mcn

n−1∑
j=1

∇fj
(kn−1 + 1 � i � kn) (17)

∇Rj
= ∇fj

. (18)

Just like in the proof of theorem 1, when we substitute equations (16)–(18) into expression
for the Hamiltonian equation (12) terms appear of the type −�fj

, ∇fi
· ∇fj

and mixed terms
such as ∇̃i · ∇fj

. The coefficient in front of −�fj
has the expression

Mcj
+ Mcn

2Mcj
Mcn

+
kj∑

s=kj−1+1

ms + mcj

2msmcj

(
ms

Mcj

)2

+
1

mcj
M2

cj

kj∑
s<p=kj−1+1

msmp (19)

+
kn∑

s=kn−1+1

ms + mcn

2msmcn

(
ms

Mcn

)2

+
1

mcn
M2

cn

kn∑
s<p=kn−1+1

msmp = 1

2µcjcn

. (20)

The coefficient in front of −∇fi
· ∇fj

has the expression

1

Mcn

+
1

mcn
M2

cn

kn∑
s=kn−1+1

(
ms + mcn

)
ms +

2

mcn
M2

cn

kn∑
s<p=kn−1+1

msmp = 1

mcn

. (21)

Finally we obtain

H =
n∑

j=1

Hcj
(x̃) + h(f) +

∑
i,j

Cij ∇̃i · ∇fj
. (22)

Let �j(x̃) be the normalized ground-state wavefunction corresponding to the energy Ej of the
cluster Hamiltonian Hcj

. To get the upper bound for the energy we construct the trial function

χ(x̃, f) = �(f)
n∏

j=1

�j(x̃). (23)

The function �(f) has determined parity with respect to transformation fj → −fj for all
j = 1, . . . , n − 1 and this cancels all mixed terms in equation (22). The trial function in
equation (23) gives the energy E1 + · · · + En + e(c1, . . . , cn) and this proves the theorem. �
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Let us assume, for example, that the graph for the system has three connected components
represented by three subsystems A,B,C. Suppose there are three particles, one in each cluster,
which form a stable system (this would be a Borromean system, because clusters A,B,C are
not connected). Then according to theorem 2 the whole system may dissociate only in two
parts such as AB and C, because decaying into three parts does not correspond to the lowest
possible energy.

Another example applies to the system of N bosons interacting with attractive potentials.
Physically, the effective mass in the system increases with the number of bosons and this
makes the system more stable. It would be right to expect that if this system becomes stable
for N = N0 then it would be stable for N � N0. However, such intuitive conjectures are
hard to prove, incidentally, it is still an open problem to prove that adding one electron to
unstable negative ion does not make it stable [7]. Theorem 2 says that if the system of bosons
is unstable for N < N0 and stable for N = N0 then there would be infinitely many N > N0

for which the system would be stable and the difference between two consecutive numbers
corresponding to stable systems is less than or equal to N0 − 1.

3. Conclusions

We have derived a general result that gives sufficient condition for stability and restricts
possible dissociations. This approach can find application in nuclear physics for analysis of
loosely bound nuclei at the border of the stable nuclear chart. The problem there is often
simplified, treating clusters as separate structureless particles such as α-particle (this is a
successful approach to many nuclei). The interaction between those clusters is often modelled
as attractive which leaves only one destructive factor—kinetic instability. For these systems
the approach can find its applications. Not only does theorem 1 give a sufficient condition,
it can help to construct efficient necessary conditions for binding (or sufficient conditions for
instability). When it comes to necessary conditions these graphs show where to concentrate
the effort. In formulating necessary conditions one simply follows the old saying: the chain
is no stronger than its weakest link.
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